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Abstract. Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates

based on the extremal behaviour of the distribution. Specifically, the confidence intervals on return value estimates or bounds

on in-sample tail statistics can be estimated using bootstrap techniques. However, bootstrapping from the entire data set is

expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to

make estimates that are essentially identical to bootstraps from the entire sequence. Similarly, bootstrap estimates of confidence5

intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This

has practical consequences in fields such as meteorology, oceanography and hydrology where return estimates are routinely

made from very large gridded model integrations spanning decades at high temporal resolution. In such cases the computational

savings are substantial.

1 Introduction10

Bootstrap resamples of time series are commonly used to estimate confidence intervals on return values (Naess and Clausen,

2001; Naess and Hungnes, 2002) and to investigate the behaviour of the tail of the empirical distribution (Coles, 2001; Beirlant

et al., 2006; Qi, 2008). This is a straightforward procedure, but one which quickly becomes cumbersome for large data sets

as it demands random draws from the entire data set which subsequently must be sorted to get to the upper percentiles. When

handling long model integrations in meteorology and oceanography with spatially gridded fields of typically 106 grid points15

this brute-force approach becomes impractical. Such quantities are regularly encountered when estimating return levels from

atmospheric reanalyses (Kalnay et al., 1996; Saha et al., 2010; Compo et al., 2011; Dee et al., 2011; Poli et al., 2016), wave

hindcasts (Swail and Cox, 2000; Caires and Sterl, 2005; Gaslikova and Weisse, 2006; Breivik et al., 2009; Reistad et al., 2011;

Aarnes et al., 2012) and long climate integrations that cover decades or even centuries (Hersbach et al., 2015). When even larger

data sets are used, such as the ensembles of seasonal integrations (Stockdale et al., 2011; Molteni et al., 2011), as was done20

by Van den Brink et al. (2005) on a data set amounting to nearly 1,000 years, the data processing becomes nearly intractable

for spatially extensive fields and findings ways to reduce the size of the data sets becomes essential. That is the subject of this

paper.

We will present a simple argument for why it is sufficient to retain only a small subsetK0 consisting of the highest entries in a

data set when estimating tail statistics such as return levels and their associated confidence intervals by means of bootstrapping.25
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These highest entries will normally only represent a small fraction of the total data set. This reduces the need for sorting and

storage by several orders of magnitude. The method also reduces the task of sorting the original data set as only the K0 highest

entries are kept.

This paper is organised as follows. Sec 2 presents the binomial argument for why we can bootstrap from a small subset

consisting of the highest entries in the original data set. Sec 3 presents three examples of bootstrapped confidence intervals of5

various tail statistics for a data set of significant wave height from the central North Sea. Here we also show how the method

laid out in Sec 2 can be used in practice to determine how many entries must be kept in order to perform an unbiased bootstrap.

Sec 4 summarises the results and presents the conclusions.

2 Bootstrapping from the K0 highest entries in a data set

Consider the sequence D0 of independent and identically distributed (iid) random numbers X1,X2, . . . ,XN . Let XN,1 ≤10

XN,2 ≤ ·· · ≤XN,N denote the order statistics on D0. When investigating a statistic θ which is a function of the k highest

entries in D0, ie θ = f(XN,N−k+1,XN,N−k+2, . . . ,XN,N ), it is common to form M bootstrap resamples D1,D2, . . . ,DM ,

each of length N (Diaconis and Efron, 1983; Efron and Gong, 1983). This method can be used to compute the confidence

intervals around extreme value estimates (Breivik et al., 2013, 2014). The procedure is computationally intensive and memory-

consuming, as it involves bootstrapping and storing M ×N numbers and performing M sorts, each a process of O(N logN)15

operations. Since we are only interested in combinations of the k highest entries in the resamples D1,D2, . . . ,DM , we will

explore the possibility of instead resampling from only the highest XN,N−K0+1,XN,N−K0+2, . . . ,XN,N−k+1, . . . ,XN,N en-

tries in D0 (K0 > k). This will be referred to as the resample threshold and is sometimes more conveniently written as the

percentage of data left out, P0 = 100(1−K0/N).

The probability of drawing one of the highest K0 entries in D0 is a binomial problem with probability p=K0/N . The20

probability of making exactly k draws (with replacement) from the highest K0 in N draws is thus given by the binomial

probability mass function [Zwillinger 1996, p 581]

fbinom(k;N,p) = P(X = k) =
(
N

k

)
pk(1− p)N−k. (1)

where X is a random variable representing the number of draws. The probability of drawing fewer than the required k entries

from the highest K0 is given by the binomial cumulative distribution function25

Fbinom(k− 1;N,p) = P(X < k) =
k−1∑

i=0

(
N

i

)
pi(1− p)N−i. (2)

A full bootstrap resample Di of length N from D0 will contain Ki entries from the highest K0, and Ki ∼ Binom(N,p)

where E[Ki] =K0 since the expected value of the binomial distribution (1) is

µbinom =Np=K0. (3)
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The variance is

σ2
binom =Np(1− p) =K0−K2

0/N ≈K0 when K0�N. (4)

Denote a short bootstrap resample from the K0 highest entries in D0 as D̃i. Two conditions must be met for D̃i to be an

unbiased substitute for Di:

1. The number K0 must be set large enough that the probability that we miss entries smaller than XN,N−K0+1 in D0 is5

below a chosen threshold pc.

2. The length K̃i of D̃i must have the same mean and variance as Ki (Eqs 3–4).

To fulfil Condition (1) it is sufficient to decide on an acceptable level for pc. This probability can be found by consulting Eq (2).

It is important to note that choosing K0 too small will bias the statistic θ̃ = f(D̃i) since it will be estimated from bootstrap

samples that miss entries smaller than XN,N−K0+1. We will for this reason refer to pc as the probability of contamination as10

it gives the probability that the bootstrap estimate is biased because we have kept too few entries from the original data set D0.

A very conservative bound on p, and thus on K0 =Np, can be found quickly by consulting Hoeffding’s formula (Hoeffding,

1963),

F (k;N,p)≤ exp
(
−2

(Np− k)2

N

)
, (5)

valid when k ≤Np. A useful quantity is the ratio r =K0/k of upper entries retained (K0) and the minimum number k required15

to form a bootstrap estimate of the statistic in question for a given probability of contamination pc. This can be estimated from

Eq (2), but when N is large the Poisson distribution is a good approximation and more practical to work with,

FPoisson(k− 1;rk) = P(X < k) = e−rk
k−1∑

i=0

(rk)i

i!
. (6)

Fig 1 shows the minimum acceptable ratioK0/k as a function of k for levels of pc ranging from 10−5 to 0.05. The probabilities

can be computed from Eq (2) [or more conveniently from Eq (6)]. As can be seen, for all values of k, the ratio is comfortably20

below 15, and for values of k larger than 10 a ratio of 3 is sufficient even for a confidence level of 10−5. See the appendix for

a more detailed explanation of the ratio curves used throughout.

Condition (2) can be handled by randomly perturbing the size of the resamples, K̃i, such that it mimics the number of draws,

Ki ∼ Binom(N,p), that would have been made from the upper K0 entries of D0 in a full bootstrap Di. In practice, as we shall

see, the statistics are quite insensitive to these perturbations as long as K0 has been chosen sufficiently large.25

3 Bootstrapping confidence intervals

Here we present worked examples of how the two conditions presented above can reduce the problem of estimating confidence

intervals on tail statistics for a data set of independent ensemble forecasts at long lead time (N = 330,000). We use archived
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ensemble forecasts (Molteni et al., 1996) of significant wave height in the central North Sea (near the Ekofisk oil field at 56.5◦

N, 003.2◦ E; a histogram of the data set used is shown in Fig 2) at a forecast lead time of 240 hours. 100-year return values

from these ensembles have previously been reported by Breivik et al. (2013) and Breivik et al. (2014).

3.1 Example 1: Confidence intervals on in-sample return estimates

Consider as an example the problem of how to calculate in-sample return estimates from the data set of independent forecasts5

presented above. These forecasts can be considered iid (as they are not from correlated time series). An in-sample return

estimate is calculated directly from the tail of the empirical distribution rather than by applying extreme value analysis. As

explained by Breivik et al. (2013) the independent forecasts presented in Fig 2 add up to the equivalent of 229 years under the

assumption that each forecast represents a time interval ∆t= 6 hours. A 100-year return estimate is then a linear interpolation

between XN,N−1 and XN,N−2 (the second and third highest entries in D0),10

H100 = 0.67XN,N−1 + 0.33XN,N−2. (7)

Now, clearly k = 3 since we need the second and third highest entries in our resamples to form a return estimate. Let us now

tentatively keep the K0 = 1,000 highest entries and bootstrap from these instead of from the entire sequence to compute the

confidence intervals on the linear combination of the second and third highest entries given by Eq (7). The size K̃i of the

resamples, D̃i, is drawn from the binomial distribution (Eqs 3–4) with µ=K0 and σ2 ≈K0. What is the probability pc that15

one of the three highest entries in a bootstrapped sequence should not have come from the 1,000 highest entries that we have

retained (i.e. should depend on entries contained in the bulk of the data set that we discarded)? It is clear that the probability

of drawing one of the highest 1,000 entries is p= 1,000/330,000, and from Eq (2) we find that the probability of picking too

few (< 3) entries from the K0 highest is

F (2;330,000,p) = P(X ≤ 2) =
2∑

i=0

(
330,000

i

)
pi(1− p)330,000−i, (8)20

which is indistinguishable from zero to double precision. Reducing the number K0 to 10 (r ≈ 3) raises the probability of

contaminating the resamples by entries from the lowerN−K0 to 0.002. This can also be confirmed by consulting Fig 1 for the

combination k = 3, r = 3. For M = 1,000 resamples we may thus expect on average 2 resamples to be contaminated by values

from the lower N −K0 values in the original sequence. A very safe compromise in this case is K0 = 100 (r ≈ 33). Consulting

Fig 1 shows that for k = 3, r = 33 we are well below a probability of contamination of 10−5. The quantile-quantile (QQ) plot25

in Fig 3 shows that resampled return estimates of significant wave height from the full data set D0 (see Fig 2) have practically

the same distribution as resamples from the upper K0 = 100 entries.

Condition (2) given above states that the length of the reduced resamples D̃1,D̃2, . . . ,D̃M should be randomly perturbed

around the mean value K0. In practice this condition turns out to be rather insignificant as long as K0 is chosen sufficiently

large. This is demonstrated in the QQ plot in Fig 4 where we see that perturbed-length estimates (abscissa) closely match30

the distribution of fixed-length estimates (ordinate). However, choosing K0 too small will bias the statistic in question. This
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is illustrated in Fig 5 where we see that bootstrap estimates from too-short data sets (K0 chosen too small) are biased high.

As K0 approaches 30 (r = 10), the mean and standard deviation of the return estimates approach their asymptotic values.

These findings are in accordance with what we find by consulting Fig 1 where we see that k = 3, r = 10 has a probability of

contamination pc less than 10−5.

3.2 Example 2: Confidence intervals on upper percentiles5

A similar problem to the estimation of confidence intervals for in-sample return values is how to estimate the confidence

interval for the highest percentiles, e.g. the 99th percentile (P99). The upper percentile is frequently used when investigating

trends in for example the wind and wave height climate [see e.g. Wang and Swail (2001, 2002)]. In order to construct a

bootstrap estimate of P99 brute force it is necessary to resample the entire data set D0 and sort the bootstrap to get to the

N/100-th highest entry. However, Fig 1 tells us that when k =N/100 is large (as it will be when N is large), we can with10

extremely high certainty say that keeping the K0 = 2k highest entries is enough to perform a bootstrap resample exercise for

the confidence interval on P99. In fact, K0 = 1.2k is sufficient for all significance levels plotted in Fig 1. This means that in

order to estimate a confidence interval for P99 we need only find the entry XN,N−k that corresponds to P99 from the original

data set D0 and retain entries higher than XN,N−1.2k. Fig 6 shows how the ratio r decreases as the sample size N increases.

It is clear that for all probabilities of contamination investigated, a ratio of K0/k = 2 is sufficient when N is larger than 2,000.15

Obviously, samples smaller than O(103) do not pose computationally demanding problems anyway and are of no interest to

us in this context. Fig 7 illustrates for a fixed probability of contamination pc = 0.01 that even as we go to higher percentiles

(the uppermost curve shows P99.9), a ratio K0/k = 2 is sufficient as the sample size N exceeds 104 (see the appendix for more

details on the ratio curves).

3.3 Example 3: Confidence intervals on return estimates from threshold exceedances20

Consider now the problem of estimating confidence intervals for threshold exceedances. The Generalized Pareto distribution

(GPD) gives the relevant extreme value distribution for independent exceedances above a threshold u (Coles 2001, pp 75–77),

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

. (9)

Here y =Xi−u, y > 0 are exceedances above an entry Xk, σ̃ is a scale parameter which is a function of the threshold u, and

ξ is the shape parameter.25

A brute-force approach would be to make N draws from D0 (with replacement) and repeat this procedure M times. Then,

GPD return estimates would be computed for each of the resulting bootstrap sequences D1,D2, . . . ,DM . Say we want to try

to instead keep only the K0 entries exceeding a threshold U0 < u corresponding to the entry XK0 in the original data set D0.

From these we need to draw at least k entries, from which we will make return estimates. The question is again how many

entries (K0) must be kept to arrive at an acceptably low probability pc that the statistic should really be based on entries below30

the threshold U0.

5

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-240, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



This problem arises when estimating GPD return values from the independent ensemble forecasts (Fig 2). For such a data

set all exceedances above a given threshold can be used to form GPD return value estimates (9). Confidence intervals on the

return values can likewise be estimated by bootstrapping from all entries exceeding this threshold. For a large data set this is

orders of magnitude faster than bootstrapping from the entire data set. Assume again that we have kept all forecasts exceeding

P99.1, ie theK0 = 3,000 highest entries (cf Fig 2). To form a return estimate we assume that we need at least k = 1,000 entries,5

corresponding to P99.7. The probability of drawing (with replacement) k or fewer entries from the highest K0 in N draws can

again be found from Eq (2) and is indistinguishable from zero to double precision with the given choice of N , K0 and k. This

is easy to verify by consulting Fig 1 where we see that for k = 1000, r = 3 we are well above the 10−5 level. Fig 8 shows that

the confidence interval and the mean return value based on M = 1,000 bootstrap resamples for various choices of resample

threshold 100(1−K0/N) (i.e. the percentage of data omitted) are practically identical to the confidence intervals based on the10

full data set D0 (marked as asterisks). Only when r =K0/k comes close to unity do we experience fluctuations and biases

(i.e., the resample threshold nearly coincides with the number of tail entries required to form a return estimate, in this case the

threshold P99.7).

4 Conclusions

Confidence intervals and other statistics on the extremes and the tail of empirical distributions are commonly found using15

bootstrap techniques. Here we have shown that it is unnecessary to bootstrap from the entire data set. The actual number K0

highest entries that must be kept to make unbiased bootstrap estimates for the tail of an empirical distribution depends on

K0 =Np as well as on the number k highest entries that are required for the statistic in question. The examples in the previous

sections calculated pc given a predetermined number K0 of tail entries that have been kept. This is a realistic approach as in

practice we often retain a larger part of the tail of an empirical distribution than what is strictly needed since the same data set20

is used to compute other statistics. It is then sufficient to consult Eq (2) to determine whether K0 is sufficiently large. A quick

estimate of the probability of contamination can be made by consulting Fig 1.

The advantages of restricting resamples to a small subset K0 consisting of the highest entries in D0 can be summarised as

follows. First, only the upper K0 entries need be kept and sorted in the original data set. This offers substantial savings in

cases like those described by Breivik et al. (2013, 2014) where a very large number of forecasts (>300,000) are handled, each25

consisting of more than 60,000 grid points in space. Second, the size of the resamples is also reduced from N to an average

size K0, where K0 is usually a very small fraction of N , typically less than 1%. Third, this reduction in resample size also

means that the cost of sorting the resamples to get to the highest entries is greatly reduced.

Appendix: Consulting the ratio curves

The ratio curves presented in Figs 1, 6 and 7 are convenient for quickly establishing how many entries (K0) must be kept in30

order to form an unbiased resample that depends on the highest k entries. The relationship between Fig 1 and Fig 6 can be
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illustrated as follows. If we assume N large we can use Fig 1. In practice we can choose N = 2× 103 without violating the

assumption that N is large. Now assume that the statistic in question is the 99th percentile, i.e. k =N/100 = 20. Let us choose

a probability of contamination pc = 0.01 (this corresponds to the red curve marked with diamonds in Fig 1). We find the ratio

to be 1.6, i.e. we will need to keep 60% more entries than the entry corresponding to P99. The corresponding curve in Fig 6 is

also marked in red. Here, the location on the x-axis to read off is N = 2× 103 which lies on the y-axis, and the ratio is again5

found to be 1.6. A more realistic example in terms of sample size would be N = 105 (and k =N/100 = 103). Now we find

from either Fig 1 or Fig 6 that with a probability of contamination pc = 0.01 that the ratio is 1.13, i.e. we need only keep 13%

more entries than the one representing the 99 percentile. Figs 1, 6 and 7 clearly illustrate that in almost all cases it is sufficient

to retain at most twice as many entries K0 from the tail of the sample distribution D0 than what is required (k) for the statistic

in question.10
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Figure 1. The ratio K0/k as a function of k, the minimum number of bootstrapped entries needed for the statistic in question, for levels

of probability of contamination ranging from 10−5 (uppermost curve) to 0.05 (lowermost curve). The curve representing 1% probability of

contamination is marked in red (with diamonds) as it is a reasonable confidence level.
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Figure 2. Histogram of the significant wave height from archived ensemble forecasts in the central North Sea (Ekofisk, 56.5N, 003.2E) at

+240 h lead time. Entries above P99.1, corresponding to threshold U0, are coloured red whilst entries exceeding P99.7, corresponding to the

upper threshold, u, are in black. The highest entries are individually marked with asterisks.
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Figure 3. A quantile-quantile comparison of 10,000 bootstrapped direct 100-year return estimates of significant wave height taken from a

forecast ensemble (Breivik et al., 2013) versus a bootstrap from the upper 100 entries in the data set. The 45◦ line is shown in red.

12

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-240, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
10000 perturbed-length bootstraps from 100 highest entries

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

1
0

0
0

0
 u

n
p
e
rt

u
rb

e
d
 b

o
o
ts

tr
a
p
s 

fr
o
m

 1
0

0
 h

ig
h
e
st

 e
n
tr

ie
s

H100 QQ

Figure 4. A quantile-quantile (QQ) comparison of M = 10,000 bootstraps D̃1,D̃2, . . . ,D̃M of variable length K̃1, K̃2, . . . , K̃M against

bootstraps of fixed length K0, all from the upper 100 entries in the original sequence D0. The difference is very small.
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Figure 5. Mean and standard deviation on 100-yr in-sample return estimates based on M = 10,000 bootstrap resamples for various choices

of resample threshold K0 for the data set in Fig 2. A minimum of k = 3 entries are required to form the return estimate [see Eq (7)]. For

choices of K0 smaller than 30 (corresponding to a ratio r =K0/k = 10) the bootstrap resamples are biased high.
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Figure 6. Bootstrapping the 99th percentile, P99. The ratio r =K0/k is shown as a function of sample size N . Here, the minimum number

of entries required is simply the upper 1% (P99), so k =N/100. Various levels of probability of contamination pc are shown, and for sample

sizes larger than approximately 2,000, a ratio r = 2 is sufficient. The curve representing 1% probability of contamination is marked in red

(with diamonds) as it represents a reasonable confidence level.
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Figure 7. Bootstrapping the upper percentiles P = P90,P95,P97,P99 and P99.9. The ratio r =K0/k is shown as a function of sample

size N . Here, the minimum number of entries required is k = (1−P )N/100. The probability of contamination is kept fixed at pc = 0.01.

At sample sizes larger than approximately 104, a ratio r = 2 is sufficient for all percentiles investigated. The curve representing the 99th

percentile is marked in red (with diamonds) and corresponds to the red curve in Fig 6.
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Figure 8. The upper and lower 95% confidence intervals and the mean 100-yr return estimates (dashed) based on M = 1000 bootstrap

resamples for various choices of resample thresholdK0 for the data set in Fig 2. Upper panel: a GPD with shape parameter ξ = 0 (exponential

distribution). Lower panel: a GPD with freely varying shape parameter. Individual bootstrap estimates are marked in grey. Estimates based

on the full data set D0 are marked as asterisks on the ordinate.
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